小学館IDをお持ちの方はこちらから
ログイン
初めてご利用の方
小学館IDにご登録いただくと限定イベントへの参加や読者プレゼントにお申し込み頂くことができます。また、定期にメールマガジンでお気に入りジャンルの最新情報をお届け致します。
新規登録
人気のタグ
おすすめのサイト
企業ニュース

パナソニックが画像から雨や雪、霧などを除去して屋外での画像認識精度を上げるAIを開発

2024.02.22

従来よりパラメータを72%以上、推論時間を39%節約しながら認識精度を向上

パナソニック ホールディングス(以下パナソニックHD)は、カリフォルニア大学 バークレー校(以下、UC Berkeley)、南京大学、北京大学の研究者らと、画像認識精度を著しく低下させる雨や雪、霧などを画像から除去することで、画像認識精度を向上させる悪天候除去AIを共同開発した。

本技術は、多重悪天候画像に対する画像認識およびセグメンテーションタスクにおいて、パラメータを72%以上、推論時間を39%節約しながら、従来法より認識精度を上げられる画像復元性能を示した。

モビリティやインフラ分野など、屋外で利用される画像認識AIの応用が進んでいる。一方、屋外で取得される画像は天候の影響をうけるため雨、雪、霧などの悪天候下では、物体の見えが大きく変化し、認識精度が著しく低下することが知られている。

そこで昨今、全天候で利用できる実用的なAIを実現するために雨、雪、霧などを画像から除去する“悪天候除去(Weather Removal)”と呼ばれるタスクが注目を集めており、天候の種類に応じ異なるモデルを準備したり、全天候で利用できるようモデルを統合する手法が提案されてきた。しかし、いずれも計算量の多さがネックとなっていたという。

そこで本研究チームでは、異なる天候のパラメータを重みで表現することで、少ないパラメータ数で高精度に天候の影響を除去し、一つのモデルで、複数種類の天候とタスクに対応できる技術を開発した。

同社では「本技術は、車載センサにおける危険検知やセキュリティカメラなど全天候で高精度な画像認識が必要とされる様々な場面での活用が期待できます」とコメントしている。

この技術は先進性が国際的に認められ、AI・機械学習技術のトップカンファレンスであるThe 38th Annual AAAI Conference on Artificial Intelligence(AAAI 2024)に採択。2024年2月22日から2024年2月25日にカナダ・バンクーバーで開催される本会議で発表される。

技術の内容

AI技術の進展に伴い、モビリティやインフラ分野など、屋外でもロバストな画像認識が求められる場面が増えている。一方、屋外では屋内と比べてコントロールできない要因が格段に増える。

特に、雨、雪、霧などの悪天候が画像中の物体の見えを大きく変化させ、認識精度を著しく下げることが産業応用上の課題とされ、雨粒の除去(Raindrop Removal)や、霧除去(Dehaze)など、悪天候除去(Weather Removal)タスクの研究開発が活発に進められてきた。

特定の天候やタスクに特化したAIモデル(エキスパートモデル)を構築する取り組みは一定の成果を見せているが、現実世界には「複数の天候が混在する悪天候」が存在し、より信頼性の高い判断が求められる。

そこで、複数のエキスパートモデルを混合するアンサンブルモデルの研究もなされているが、パラメータが激増することから、計算量の面で実用的なモデルは存在していなかったという。

上記課題を解決するために、本研究チームはMoFME(Mixture-of-Feature-Modulation-Experts)を共同開発。

本技術は、画像認識精度を低下させる雨や雪、霧を1つのアンサンブルモデルで、かつ従来の1/3のパラメータ数で除去することが可能な悪天候除去AIだ。

図1 開発した悪天候除去AIの概略図

従来、天候やタスクに応じて複数のエキスパートモデルを用意する必要があった画像認識やセグメンテーションなどのタスクを、1つのアンサンブルモデルにより実用的な計算量で実現するため、以下の2つの新しい手法を導入した。

1つ目は、複数のエキスパートモデルのパラメータを線形変換の重みで表現する「特徴変調エキスパート(Feature Modulated Expert)」という手法だ。

異なるエキスパートモデルのパラメータを個別に学習するのではなく、特定のエキスパートモデルの線形変調により表現することで、総パラメータ数と計算量を削減した。

2つ目は、入力画像の特徴に応じて、各エキスパートモデルの寄与度を切り替える「不確実性を考慮したルーター(Uncertainty-aware Router)」という手法だ。

各エキスパートモデルは、それぞれ得意とする天候が異なる。そこで、あるエキスパートモデルが、天候除去結果に余り自信がない(不確実性が高い)場合は、そのモデルの寄与度を下げ、逆の場合は寄与度を上げるよう最適化することで、アンサンブルモデルの信頼性を高め、画像認識性能を向上させている。

図2 雨と霧が混在した入力画像に対するMoFMEの悪天候除去結果とセグメンテーションタスクへの効果

図2に、データセット“RainCityscapes”に対するMoFMEによる悪天候除去およびセグメンテーションの結果を示す。

本技術は、雨と霧が混在するような複雑な画像に対しても、雨と霧の両方を除去し正解画像同等の結果を得た。

さらに、悪天候下ではセグメンテーションの精度が著しく低下するが、MoFMEにより事前に悪天候除去を行うことで、セグメンテーションの精度低下を抑制することが可能になった。

本技術は、多重悪天候画像に対する画像認識およびセグメンテーションタスクにおいて、パラメータを72%以上、推論時間を39%節約しながら、従来法より認識精度を上げられる画像復元性能を示した。

今後の展望

今回、共同開発したMoFMEは、画像認識精度を著しく低下させる雨や雪、霧などを画像から除去することで、それらが画像認識AIの性能に与える影響を低減する。

従来の1/3のパラメータ数で雨も霧もクリアに復元できることから、モビリティやインフラ分野など、屋外でもロバストな画像認識が求められる場面での活用が期待できる。

同社では「今後もパナソニックHDは、AI技術の社会実装を加速し、お客様のくらしやしごとの現場へのお役立ちに貢献するAI技術の研究・開発を推進していきます」と述べている。

関連情報
https://tech-ai.panasonic.com/jp/

構成/清水眞希

@DIMEのSNSアカウントをフォローしよう!

DIME最新号

最新号
2024年11月15日(金) 発売

DIME最新号は「2024年ヒットの新法則!」、永尾柚乃、小田凱人、こっちのけんと他豪華インタビュー満載!

人気のタグ

おすすめのサイト

ページトップへ

ABJマークは、この電子書店・電子書籍配信サービスが、著作権者からコンテンツ使用許諾を得た正規版配信サービスであることを示す登録商標(登録番号 第6091713号)です。詳しくは[ABJマーク]または[電子出版制作・流通協議会]で検索してください。